DRACULA2 is a dynamic nucleoporin with a role in regulating the shade avoidance syndrome in Arabidopsis.

نویسندگان

  • Marçal Gallemí
  • Anahit Galstyan
  • Sandi Paulišić
  • Christiane Then
  • Almudena Ferrández-Ayela
  • Laura Lorenzo-Orts
  • Irma Roig-Villanova
  • Xuewen Wang
  • Jose Luis Micol
  • Maria Rosa Ponce
  • Paul F Devlin
  • Jaime F Martínez-García
چکیده

When plants grow in close proximity basic resources such as light can become limiting. Under such conditions plants respond to anticipate and/or adapt to the light shortage, a process known as the shade avoidance syndrome (SAS). Following genetic screening using a shade-responsive luciferase reporter line (PHYB:LUC), we identified DRACULA2 (DRA2), which encodes an Arabidopsis homolog of mammalian nucleoporin 98, a component of the nuclear pore complex (NPC). DRA2, together with other nucleoporins, participates positively in the control of the hypocotyl elongation response to plant proximity, a role that can be considered dependent on the nucleocytoplasmic transport of macromolecules (i.e. is transport dependent). In addition, our results reveal a specific role for DRA2 in controlling shade-induced gene expression. We suggest that this novel regulatory role of DRA2 is transport independent and that it might rely on its dynamic localization within and outside of the NPC. These results provide mechanistic insights in to how SAS responses are rapidly established by light conditions. They also indicate that nucleoporins have an active role in plant signaling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DRACULA2, a dynamic nucleoporin with a role in the regulation of the shade avoidance syndrome in Arabidopsis

Marçal Gallemí, Anahit Galstyan, Sandi Paulišić, Christiane Then, Almudena Ferrández-Ayela, Laura Lorenzo-Orts, Irma Roig-Villanova, Xuewen Wang, Jose Luis Micol, Maria Rosa Ponce, Paul F. Devlin, Jaime F. Martínez-García Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Barcelona, Spain; Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche,...

متن کامل

Arabidopsis DNA topoisomerase I alpha is required for adaptive response to light and flower development

DNA topoisomerase I alpha (TOP1α) plays a specific role in Arabidopsis thaliana development and is required for stem cell regulation in shoot and floral meristems. Recently, a new role independent of meristem functioning has been described for TOP1α, namely flowering time regulation. The same feature had been detected by us earlier for fas5, a mutant allele of TOP1α In this study we clarify the...

متن کامل

Phytochrome D acts in the shade-avoidance syndrome in Arabidopsis by controlling elongation growth and flowering time.

Shade avoidance in higher plants is regulated by the action of multiple phytochrome (phy) species that detect changes in the red/far-red ratio (R/FR) of incident light and initiate a redirection of growth and an acceleration of flowering. The phyB mutant of Arabidopsis is constitutively elongated and early flowering and displays attenuated responses to both reduced R/FR and end-of-day far-red l...

متن کامل

Interactions between Auxin, Microtubules and XTHs Mediate Green Shade- Induced Petiole Elongation in Arabidopsis

Plants are highly attuned to translating environmental changes to appropriate modifications in growth. Such phenotypic plasticity is observed in dense vegetations, where shading by neighboring plants, triggers rapid unidirectional shoot growth (shade avoidance), such as petiole elongation, which is partly under the control of auxin. This growth is fuelled by cellular expansion requiring cell-wa...

متن کامل

Plant Responses to Vegetation Proximity: A Whole Life Avoiding Shade

In high density of vegetation, plants detect neighbors by perceiving changes in light quality through phytochrome photoreceptors. Close vegetation proximity might result in competition for resources, such as light. To face this challenge, plants have evolved two alternative strategies: to either tolerate or avoid shade. Shade-avoiding species generally adapt their development by inducing hypoco...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 143 9  شماره 

صفحات  -

تاریخ انتشار 2016